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Abstract. Several neuropsychological tests and biomarkers of Alzheimer’s disease (AD) have been validated and their evolution
over time has been explored. In this study, multiple heterogeneous predictors of AD were combined using a supervised learning
method called Disease State Index (DSI). The behavior of DSI values over time was examined to study disease progression
quantitatively in a mild cognitive impairment (MCI) cohort. The DSI method was applied to longitudinal data from 140 MCI cases
that progressed to AD and 149 MCI cases that did not progress to AD during the follow-up. The data included neuropsychological
tests, brain volumes from magnetic resonance imaging, cerebrospinal fluid samples, and apolipoprotein E from the Alzheimer’s
Disease Neuroimaging Initiative database. Linear regression of the longitudinal DSI values (including the DSI value at the point
of MCI to AD conversion) was performed for each subject having at least three DSI values available (147 non-converters, 126
converters). Converters had five times higher slopes and almost three times higher intercepts than non-converters. Two subgroups
were found in the group of non-converters: one group with stable DSI values over time and another group with clearly increasing
DSI values suggesting possible progression to AD in the future. The regression parameters differentiated between the converters
and the non-converters with classification accuracy of 76.9% for the slopes and 74.6% for the intercepts. In conclusion, this
study demonstrated that quantifying longitudinal patient data using the DSI method provides valid information for follow-up of
disease progression and support for decision making.

Keywords: Alzheimer’s disease, biomarkers, data mining, decision support techniques, early diagnosis, mild cognitive
impairment

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenera-
tive disease that develops gradually over the years
and finally results in loss of cognitive function and
dementia [1]. Mild cognitive impairment (MCI) is
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an intermediate state between normal cognition and
dementia. Patients with MCI have cognitive problems
that are not normal for their age and do not yet interfere
with their daily activities [2–4]. MCI with memory dys-
function is a risk factor for AD, however, not all MCI
patients will progress to AD [2, 3].

There is no cure for AD, but it has been modeled
that delaying the onset of the disease would reduce
its prevalence considerably, and slowing down its pro-
gression would allow more cases to remain as mild AD
instead of progressing to moderate or severe AD which
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causes huge costs to society [5]. Different treatments
to modify disease progression have been studied [6, 7]
and it has been shown that they should be started as
early as possible to be effective [7, 8]. To make ear-
lier AD diagnosis and interventions feasible, different
neuropsychological tests and biomarkers from labora-
tory tests and imaging have been studied extensively
[9–12].

In 2010, Jack et al. [13] proposed a model describ-
ing temporal evolution of major AD biomarkers. The
model was recently updated on the basis of gained
knowledge, and according to it, different biomark-
ers of AD become abnormal in a certain temporal
order and their longitudinal behavior is non-linear
[14]. Biomarkers measuring deposition of amyloid-
� plaques become abnormal first, years before the
clinical symptoms appear. They are followed by indi-
cators of neurodegeneration, and the last biomarkers
to become abnormal are structural changes visible
in magnetic resonance imaging (MRI) and changes
in cerebral metabolism revealed by fluorodeoxyglu-
cose positron emission tomography (FDG-PET). The
updated model also takes into account that the sever-
ity of cognitive impairment due to pathophysiological
load of AD is individual depending on, e.g., genetics,
lifestyle, and other brain diseases.

New guidelines, incorporating both cognitive
assessment and biomarkers for diagnosing different
stages of AD, were recently published as a result of
these research findings [15–18]. They state that the
detection of preclinical stages of AD in research sub-
jects should be based on biomarkers and that MCI
and AD are diagnosed using clinical and cognitive
evaluation and biomarkers can provide complementary
information.

All the different tests and investigations done in
modern diagnostics produce large amounts of data that
clinicians need to explore carefully. Assessing the het-
erogeneous data and measuring longitudinal changes
in them may be difficult. Several studies have success-
fully combined multimodal data to classify subjects
into classes of healthy, MCI, or AD using established
classification methods, e.g., logistic regression or sup-
port vector machines [19–24]. There also exists a
statistical Disease State Index (DSI) method which
estimates the state of a patient in the continuum from
healthy to disease on the basis of measured data. The
DSI method has been developed and extensively stud-
ied by most of the authors of this manuscript. Mattila
et al. [22] demonstrated that it discriminated well
between healthy cases, MCI cases that do not con-
vert to AD, MCI cases that convert to AD, and AD

cases. A recent study, also by Mattila et al. [25], showed
that approximately half of the MCI patients who devel-
oped into AD could have been classified with a high
accuracy already a year before receiving the clinical
diagnoses using the DSI. However, it has not been stud-
ied yet how DSI values develop over time in subjects
with MCI.

DSI values can be visualized with a Disease State
Fingerprint (DSF) technique which shows how results
from different tests contribute to the disease state of a
patient. The DSF allows rapid interpretation of large
amounts of patient data and helps clinicians to discern
relevant information from irrelevant [22]. Until now,
only data from a single time point have been visualized
using the DSF.

The objective of this work was to study disease
progression quantitatively using heterogeneous longi-
tudinal data in an MCI cohort. First, it was studied
whether it is possible to discern significant trends in
the severity of AD as reflected by the DSI and whether
subjects that convert from MCI to AD have a differ-
ent longitudinal DSI behavior than subjects that do not
convert. Second, classification of MCI subjects to con-
verters and non-converters on the basis of the trend
parameters from longitudinal DSI values was tested.
Third, to facilitate interpretation of data, the DSF visu-
alization was developed further for the presentation of
longitudinal data.

MATERIALS AND METHODS

Study population

Data used in the analyses were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [26]. ADNI is a 5-year study aiming at devel-
oping and testing methods for acquiring and analyzing
biological markers that measure the progression of
MCI and AD [27]. ADNI was launched in 2004, and
approximately 800 subjects of age 50 to 90 years
have been recruited at around 50 sites in the United
States and Canada. The enrolled subjects included 200
healthy elderly controls, 400 subjects with MCI, and
200 subjects with early AD. The subjects underwent
cognitive assessment, neuropsychological testing, and
MRI at intervals of six or twelve months for two to four
years. Other tests, such as FDG-PET and blood and
cerebrospinal fluid samples (CSF), were performed
less frequently [28].

In the present study, MCI cases with at least 24
months of follow-up data were included. The selected
MCI cases were divided into two groups: a stable
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Table 1
Demographics of the study population at the baseline

Stable MCI Progressive MCI p

Subjects 149 (51.6%) 140 (48.4%)
Gender 0.373

Female 51 (34.2%) 55 (39.3%)
Male 98 (65.8%) 85 (60.7%)

Age (years) 75.1 ± 7.4 75.4 ± 6.7 0.916
Education (years) 15.9 ± 3.0 15.6 ± 3.0 0.239

Data presented as number of subjects (percentage of subjects %)
or mean ± standard deviation. p: Group differences were examined
using appropriate tests based on whether their distribution was nor-
mal or not as determined by the Kolmogorov-Smirnov test: Pearson
χ2 test (gender) and Mann-Whitney U test (age and education).

MCI group (SMCI, n = 149), who did not obtain the
diagnosis of AD during the follow-up period, and a pro-
gressive MCI group (PMCI, n = 140), whose diagnosis
changed from MCI to AD during the follow-up. Sub-
jects whose diagnosis changed from MCI to healthy or
from MCI to AD and then back to MCI were excluded
from the study. Demographics of these two groups are
presented in Table 1.

The data were downloaded from the ADNI web-
site (http://adni.loni.ucla.edu) in September 2011. The
data used in the analyses comprised Mini-Mental
State Examination (MMSE), Alzheimer’s Disease
Assessment Scale-cognitive subscale (ADAS), Neu-
ropsychological Battery (NeuroBat), brain volume
measures based on MRI, amyloid-� and total tau in
CSF, and apolipoprotein E (APOE). Details of the
included variables are presented in the Supplemen-
tary Material. MRI brain volume measures provided
to ADNI by Anders Dale Lab (University of Califor-
nia, San Diego) were used. They performed volumetric
segmentation of MRI with the FreeSurfer image analy-
sis suite, which is documented and freely available for
download online (http://surfer.nmr.mgh.harvard.edu/).
Technical details of the segmentation are described in
[29].

Diagnosis of MCI and AD in the ADNI is based
on evaluation of memory, cognition, and functional
performance (memory complaints by a subject or a
study partner, Logical Memory II, MMSE, and Clin-
ical Dementia Rating) [28]. In addition, diagnosis of
probable AD requires fulfillment of the AD criteria
defined by the NINCDS-ADRDA (the National Insti-
tute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease and Related
Disorders Association) [30, 31]. Although the diagno-
sis is partly based on MMSE and Logical Memory II,
they were included in the data analyses in this study
because 1) MMSE is widely used making it interesting

in clinical sense, 2) the diagnosis is not based only on
the MMSE and Logical Memory II, and 3) the ADNI
criteria to decide between MCI versus AD does allow
overlap in MMSE score and Logical Memory II score.

Variables summarizing the tests, e.g., total MMSE
score and ADAS 13 point total, were excluded as
independent variables from the analysis because the
subscores and the individual items contain the same
information as the total scores. Justification for the use
of individual items instead of total scores is that some
items may differentiate between SMCI and PMCI
cases better than others and part of the available infor-
mation is lost if only the total scores are used. For
example, Llano et al. [32] weighted individual items
of ADAS with coefficients derived using data-driven
approach and constructed a new composite ADAS
score. Their composite score differentiated normal
controls, MCI, and AD cases better than the ADAS
total score and the composite score also predicted con-
version to AD slightly better than the ADAS total score.

Disease State Index

The DSI is a statistical method for deriving a scalar
value that estimates the state of a disease in a patient
[22]. The DSI method is based on the computation of
two different values: DSI values and relevance values.
The DSI value of an individual variable is computed
by comparing a measurement value from a patient
to the distributions of known healthy and diseased
cases using a so-called fitness function. DSI values are
between zero and one, with higher values indicating
that the patient fits better to the disease than to the con-
trol population on the basis of the measured data. The
relevance value describes how well the variable differ-
entiates between the known healthy and diseased cases.
In other words, relevance is a measure of the differ-
ences in the data measured from healthy and diseased
cases. Relevance values, like the DSI values, are also
between zero and one, with higher values represent-
ing better discrimination. A composite DSI combining
different variables is computed as a weighted arith-
metic mean of the individual DSI values weighted by
the relevance values. This averaging is done several
times recursively to yield a hierarchy of DSI values
that reveals the overall position or rank in relation to
the disease, i.e., quantifies the progression of a disease
based on available patient data. In this work, the study
population consisted of SMCIs as control cases and
PMCIs as disease cases.

The DSI method is robust against overfitting by its
design. Estimation of the DSI and relevance values
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Table 2
Number of available patient visits at different time points

Baseline Month 6 Month 12 Month 18 Month 24 Month 30 Month 36 Month 42 Month 48

Total 289 287 287 279 281 0 233 0 51
SMCI 149 148 147 143 142 0 121 0 19
PMCI 140 139 140 136 139 0 112 0 32

SMCI, stable mild cognitive impairment; PMCI, progressive mild cognitive impairment.

for individual variables is done independently from
other variables, thus, there is no over-dimensionality
at the variable level because only two parameters are
estimated for each variable (the DSI value and the rele-
vance value). In addition, weighting of features and the
use of the hierarchy lead in practice to feature selection.
As a result, any few values alone will not determine
the resulting composite DSI value, but it is an amal-
gam of all relevant data sources. Mathematical details
of the computation of the DSI and relevance values are
explained in [22].

The DSI values can be calculated on the basis of a
single variable or multiple variables together. In this
study, it was investigated whether combining different
data modalities would yield better results than utilizing
data from a single modality alone. Thus, DSI val-
ues were calculated using two different approaches:
1) using all available variables together (MMSE,
ADAS, NeuroBat, MRI, CSF, and APOE) and 2)
using data from individual data modalities indepen-
dently (MMSE, ADAS, NeuroBat, and MRI). CSF was
measured less frequently so it was not analyzed indi-
vidually and neither was APOE genetics, which do not
change with disease progression. For the calculation of
the DSI values, subjects were divided into ten training
and test sets for stratified 10-fold cross-validation in
which each fold contains the same proportions of class
labels. The training data used for building the model
of AD progression included actual measurement val-
ues from SMCI baseline visits and actual measurement
values from the time of receiving AD diagnosis for
PMCI cases. This kind of selection of training data sets
the dynamic range of the DSI method between SMCIs
at the baseline and early AD, i.e., the dynamic range
of the DSI method was optimized for the purposes of
the study and clinical problem at the hand. The test
sets included data from the complete series of visits
of the remaining SMCI and PMCI cases. The number
of patient visits available at the different time points
is shown in Table 2. Missing values in the raw data
(e.g., a missing result in MMSE) were replaced with
the values from the patient’s previous available visit.
This allowed having complete data sets for the analy-
sis at each patient visit. Although using previous data

can result in slightly outdated data and conservative
disease progression estimates for some patient visits,
that data were known to have been available at those
time points.

Disease State Fingerprint

The DSF is a method for visualizing the patient data
and the hierarchy of the DSI values [22]. Example visu-
alizations are shown in the left panel of Fig. 1. DSF
consists of a tree with nodes of different sizes and col-
ors. The size of the node indicates the relevance value,
i.e., how well a variable or a test differentiates between
SMCI and PMCI, and color indicates the DSI value.
Higher DSI values refer to PMCI and result in shades of
red. Lower values represent SMCI and result in shades
of blue. In this study, the progression of AD was visu-
alized using the DSF technique extended with support
for longitudinal data.

Synchronization of the time stamps

The initial visits of MCI patients to a memory clinic
occurred in different phases of the disease. For exam-
ple, some PMCI cases converted from MCI to AD at
follow-up month 6 and others at month 36. To take this
into account, the time stamps of the patient visits were
synchronized. The moment of receiving AD diagno-
sis was set as the zero time point (Z) of PMCIs. For
SMCIs, the last available time point up to month 36
was set as their Z. The time points preceding the zero
point were labeled as Z-6, Z-12, etc. DSI values from
Z-42 and Z-48 months were excluded from the analy-
sis because they contained only a few cases. Thus, DSI
values computed from visit data at Z, Z-6, Z-12, Z-18,
Z-24, Z-30, and Z-36 months were used in the analysis.
Only those subjects who had at least three DSI values
available in all approaches (DSI calculated using all
variables, MMSE, ADAS, NeuroBat, or MRI), were
included for further analysis. The purpose was to per-
form linear regression (see below) and using only two
points would have yielded in perfect regression, mak-
ing the comparison of goodness of fit values between
the different datasets unfair. The number of available
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Fig. 1. Visualizations of three sets of longitudinal patient data. Left panel: Disease State Fingerprints (DSF) in which Disease State Index (DSI)
values of the individual tests at different time points are shown on the rows. Total DSI values (the topmost rows of the DSFs) combines the
results from the individual tests. Sizes of the boxes indicate how well the variable discriminates between the stable (SMCI) and progressive
(PMCI) mild cognitive impairment cases. Color indicates to which group the data fits the best. Blue corresponds to SMCI and red to PMCI. Right
panel: linear regression of the total DSI values (red dashed line with white circles). Black squares present the total DSI values of a patient. The
horizontal lines indicate a threshold where the classification accuracy of 85% is achieved. The vertical line shows the current age of a patient.
Data from two SMCI cases are presented in the topmost panels and data from a PMCI case is presented in the lowest panel.
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Table 3
Number of Disease State Index values of the SMCI and PMCI cases
at synchronized time points. The last available time point up to month
36 was selected as the zero time point (Z) of SMCI. The moment of
receiving Alzheimer’s disease diagnosis was set as the Z of PMCI.

The time points preceding the Z were labeled as Z-6 etc

Z-36 Z-30 Z-24 Z-18 Z-12 Z-6 Z

SMCI 147 147 147 147 147 147 147
PMCI 29 29 64 90 126 126 126

SMCI, stable mild cognitive impairment; PMCI, progressive mild
cognitive impairment. The number of SMCI cases stays the same
because the visit Z-36 is their baseline visit and any missing values
have been replaced with the values from the previous available visit.
The number of PMCI cases changes over time because some have
converted in an early phase of the study. Only the cases having at
least three available DSI values were included.

DSI values of the included SMCI and PMCI cases at
the synchronized time points is presented in Table 3.

Modeling progression of AD

In this work, it was assumed that the change of the
DSI values over time, and thus the progression of AD,
can be modeled linearly:

DSI = a ∗ t + b (1)

where a is the slope of regression (rate of change
for DSI values), b is the intercept of regression (DSI
value at the time point zero), and t is time measured
in months. A linear model was selected because it is
the simplest method to model the progression of AD
and it is also the simplest to interpret. Another reason
was that due to the synchronization of the time stamps
some subjects had only few DSI values available for the
regression. Thus, there were not enough data points for
more complicated models. The third reason supporting
the linear model was that the follow-up times were rel-
atively short compared with the time span of disease
progression in AD in overall. Linear regression was
performed for each subject separately to model each
individual’s disease progression.

Differentiation using the trend parameters

Classification of subjects as SMCI or PMCI cases
on the basis of their regression parameters (slope,
intercept) was studied as follows. First, optimal clas-
sification thresholds for the regression parameters
were defined on the basis of the receiver operat-
ing characteristic (ROC) curves. Then, the regression
parameters were compared to the threshold value and
if it was exceeded the subject was classified as PMCI.
Otherwise he or she was classified as SMCI. The

thresholds and classification performance measures
(classification accuracy, sensitivity, and specificity)
were calculated using the stratified 10-fold cross-
validation.

Statistical methods

Normality of the continuous demographic variables
was studied using Kolmogorov-Smirnov test. Group
differences in demographics between SMCI and PMCI
groups were examined using non-parametric Mann-
Whitney U test for continuous variables and Pearson
χ2 test for categorical variables.

Linear regression was performed using the longi-
tudinal DSI values which were derived using 1) all
available variables together (total) and 2) data from
individual tests separately. Goodness of fit of the lin-
ear regression using 1) and 2) was compared using
R2, adjusted R2, and mean square errors. Residuals of
the regression were also examined using histograms
and by plotting residuals versus predicted values. The
regression parameters of the SMCI and PMCI groups
were compared to zero using one-sample Wilcoxon
Signed Rank test and the differences between the
groups were studied using Mann-Whitney U test.

Normality of the regression parameters was studied
using histograms. On the basis of the initial histogram
analysis, it appeared that the slopes of the SMCI group
may have a bimodal distribution. Fits of unimodal
and bimodal distributions were compared and details
of these analyses are explained in the Supplementary
Material.

Subjects were classified as SMCIs or PMCIs on
the basis of their regression parameters. Classification
performance was measured using the area under the
ROC curve (AUC), classification accuracies, sensitiv-
ities, and specificities. To study whether using all data
modalities together would yield in significantly greater
classification performance than using only a single data
modality, classification accuracies of the individual
tests were compared to the classification accuracies
derived using all data. Thus, four comparisons with
both the slopes and the intercepts (total-MMSE, total-
ADAS, total-NeuroBat, total-MRI) were performed.
The classification accuracies of the slopes and the
intercepts derived using all data were also compared.
Paired samples t-test was used if the classification
accuracies were normally distributed according to
Kolmogorov-Smirnov test, otherwise, related-samples
Wilcoxon Signed Rank test was performed. In all anal-
yses, p < 0.05 was considered significant. In pairwise
comparisons of classification accuracies, Bonferroni
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Table 4
Goodness of fit for the linear regression of longitudinal Disease State

Index values derived using different data modalities

Dataset R2 Adjusted R2 Mean square error

Total 0.553 ± 0.289 0.422 ± 0.369 0.006 ± 0.008
MMSE 0.364 ± 0.295 0.172 ± 0.390 0.014 ± 0.016
ADAS 0.388 ± 0.298 0.196 ± 0.413 0.024 ± 0.026
NeuroBat 0.475 ± 0.318 0.315 ± 0.426 0.005 ± 0.004
MRI 0.721 ± 0.259 0.642 ± 0.321 0.001 ± 0.001

Total, All available variables included when calculating DSI val-
ues; MMSE, Mini-Mental State Examination; ADAS, Alzheimer’s
Disease Assessment Scale-cognitive subscale; NeuroBat, Neuropsy-
chological Battery; MRI, brain volumes derived from magnetic
resonance imaging. The values are mean ± standard deviation
because the linear regression was performed for each subject inde-
pendently.

correction was applied and p < 0.0056 was considered
significant (number of comparisons was nine).

All analyses were performed in Matlab R2012a (The
Mathworks, Natick, MA) and IBM SPSS Statistics 19
(IBM, Armonk, NY). Visualizations were processed
in GNU Image Manipulation Program 2.0 (GIMP 2.0,
freely available at http://www.gimp.org/).

RESULTS

Modeling progression of AD

Goodness of fit for linear regression of the longitudi-
nal DSI values is shown in Table 4. On the basis of R2,
adjusted R2, and mean square error, the linear associa-
tion was the strongest when DSI values were calculated
using only MRI-derived volumes. The linear model fit-
ted the second best when all available variables were
used together. The longitudinal DSI values derived on
the basis of cognitive and neuropsychological tests had
the smallest association values. Plots of residuals ver-
sus predicted values supported the interpretation that
the DSI values calculated on the basis of ADAS and
MMSE were the least linear over time: points in the
plots were not as randomly distributed as they were
when the DSI values were based on all available data,
MRI, or NeuroBat (results not shown here).

The linear regression of the DSI values over time was
performed for each subject independently. Medians of
the regression parameters for SMCI and PMCI groups
are shown in Table 5. The slopes and the intercepts of
both groups were higher than zero (p < 0.0005). There
were also clear differences between the two groups:
PMCIs had five times higher slopes and almost three
times higher intercepts than SMCIs (p < 0.0005).

The distributions of the slopes of both groups
are presented in Fig. 2. On the basis of the visual

Table 5
Regression parameters of longitudinal Disease State Index values

for SMCI and PMCI groups

SMCI PMCI

Slope∗ 0.002 (0.000, 0.006)+ 0.010 (0.005, 0.015)+
Intercept∗ 0.295 (0.139, 0.621)+ 0.754 (0.626, 0.860)+
n 7 (7; 7) 5 (3; 5)

Values are median (25th percentile, 75th percentile). SMCI, sta-
ble mild cognitive impairment; PMCI, progressive mild cognitive
impairment, n, number of points in the regression, ∗statistically
significant difference between the groups (Mann-Whitney U
test, p < 0.0005), +significantly different from zero (one-sample
Wilcoxon Signed Rank test, p < 0.0005). Disease State Index values
were derived using all variables together.

inspection, the SMCI curve deviated from a Gaussian
distribution containing also cases with higher slopes.
Therefore, a hypothesis was put forth that the SMCI
group actually contained two subgroups: one with truly
stable DSI values and one with non-stable DSI values
having signs of disease progression. A mixture distri-
bution of two normal curves was fitted to the slopes of
the SMCIs. The fits of unimodal and bimodal distri-
butions were compared, and the results and estimated
parameters are shown in the Supplementary Material.
The results showed that the bimodal distribution fitted
better to the slopes of the SMCIs than the unimodal
distribution supporting the idea that two subgroups do
exist within the SMCI group.

Visualizing progression of AD

In Fig. 1, the progression of AD is visualized using
the DSF and the regression line of the DSI values.
Most of the nodes in the DSF of a clear SMCI case
are blue indicating that the patient data remained con-
stantly unlike the data of those with AD. Also, the slope
and the intercept of the regression line have low val-
ues (Fig. 1, topmost panel). On the contrary, almost all
nodes of a clear PMCI case are red, indicating strong
resemblance to previously diagnosed AD cases, and
the slope and the intercept are higher as well (Fig. 1,
lowest panel). A SMCI case with clearly increasing
DSI values and the DSF changing from blue to red
is also shown (Fig. 3, mid-panel). This case belongs
to the subgroup of SMCI cases with non-stable DSI
values in Fig. 2.

Differentiation using the trend parameters

MCI cases were classified as SMCI or PMCI using
the regression parameters of the longitudinal DSI val-
ues, and the classification performance results are

http://www.gimp.org/
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Fig. 2. Histograms of the slopes for stable (SMCI, blue) and progres-
sive (PMCI, red) mild cognitive impairment cases. There appears to
be two separate subgroups in the SMCI group. A mixture distribution
of two normal curves fitted to the slopes of SMCIs is also shown. The
areas of the histograms are scaled to one. (SD = standard deviation,
Q1 = 25th quartile, Q3 = 75th quartile).

Fig. 3. Receiver operating characteristic curves of the slope (solid
line) and the intercept (dashed line). Regression parameters were
defined using total Disease State Index values over time.

presented in Table 6. AUCs were the highest when all
available variables were used in the analysis (total).
Classification accuracies were normally distributed,
except for the slopes derived using NeuroBat. The

Table 6
Classification performance of the regression parameters of the lon-
gitudinal Disease State Index values derived using different datasets

AUC (%) Accuracy (%) Sensitivity (%) Specificity (%)

Slope
Total 82.3 76.9 ± 8.8 82.2 ± 13.7 73.0 ± 15.0
MMSE 77.1 71.8 ± 7.6 55.5 ± 15.5 86.5 ± 5.5
ADAS 76.8 68.7 ± 10.2 51.1 ± 19.2 83.6 ± 10.2
NeuroBat 76.6 69.2 ± 5.8 60.2 ± 13.2 76.9 ± 15.3
MRI 71.0 66.8 ± 8.1 49.5 ± 14.4 80.6 ± 14.7

Intercept
Total 80.8 74.6 ± 8.7 75.1 ± 17.4 74.4 ± 12.2
MMSE 79.0 72.0 ± 5.0 84.2 ± 11.6 61.5 ± 11.6
ADAS 80.3 74.9 ± 8.8 74.4 ± 15.6 75.7 ± 10.5
NeuroBat 79.3 66.9 ± 6.1 74.4 ± 21.7 61.0 ± 14.0
MRI 69.6 60.4 ± 8.9 55.6 ± 16.2 63.9 ± 16.2

Results are mean ± standard deviation from the stratified 10-fold
cross-validation, except for the AUC. Total, all available variables
included when calculating Disease State Index values; MMSE, Mini-
Mental State Examination; ADAS, Alzheimer’s Disease Assessment
Scale-cognitive subscale; NeuroBat, Neuropsychological Battery;
MRI, brain volumes derived from magnetic resonance imaging;
AUC, area under the receiver operating characteristic curve.

classification accuracy of the slopes (total) was sig-
nificantly higher than the classification accuracies of
the slopes derived using ADAS or MRI (p = 0.001
for total-ADAS and p = 0.005 for total-MRI compar-
isons). The classification accuracy of the intercepts
(total) was significantly higher than classification accu-
racy of the MRI-derived intercepts (p = 0.004). Other
pairwise comparisons of the slopes and the inter-
cepts were not statistically significant (all p > 0.01,
Bonferroni-corrected significance level was 0.0056).
The classification accuracies of the slopes (total) and
the intercepts (total) were very similar (76.9% and
74.6%, respectively, p = 0.309). ROC curves of the
slopes (total) and the intercepts (total) are presented
in Fig. 3.

DISCUSSION

Quantification of disease progression from MCI to
AD was studied by applying the DSI method to het-
erogeneous longitudinal patient data and analyzing the
behavior of the DSI values over time in subjects with
MCI. Trend parameters of the longitudinal DSI values
were obtained from regression and ability of them to
differentiate between the groups of stable and progres-
sive MCI was also studied.

In this study, it was assumed that the behavior of
the longitudinal DSI values can be modeled linearly.
The linear association was the strongest when the
DSI values were based only on MRI features. Behav-
ior of the total DSI values was not as linear because
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neuropsychological tests were included and their tem-
poral behavior was the least linear. The linear model
may not necessarily be the best model for progression
of AD but it was selected because of simplicity and
due to paucity of data. Some subjects with PMCI had
only a few DSI values available for the regression due
to synchronization of the time stamps.

Jack and his colleagues [13] proposed that changes
in biomarkers over time would be sigmoidal and
biomarkers would become abnormal in a certain tem-
poral order. These assumptions gained support in
several studies and they still are core components of
the recently revised model [14]. Caroli et al. [33] pro-
vided the first evidence supporting the first version of
the model. They compared the fit of linear and sig-
moidal model and concluded that the sigmoidal model
fitted better for hippocampal volume, and amyloid-�
and total-tau in CSF. The linear model fitted better
for FDG-PET data. Instead of real longitudinal data,
Caroli et al. [33] used data from healthy controls,
PMCIs, and early and late ADs at the baseline to
reflect the progression of AD. Mouiha and Duchesne
[34] used the same kind of cross-sectional setting to
study the relationship between biomarkers and dis-
ease severity. They fitted six different models (linear,
quadratic, robust quadratic, local quadratic regression,
penalized B-spline, and sigmoid) to baseline data from
healthy controls, PMCI, and AD cases [34]. According
to them, amyloid-� had a piece-wise quadratic rela-
tionship, hippocampal volume and CSF measures of
phosphorylated tau and total tau were best modeled
with penalized B-splines, and linear model was the
best fit for FDG-PET [34].

The results in this study show that the change of DSI
values over time as reflected by the slope of the linear
regression equation is clearly different in the SMCI
and PMCI groups. The slope of PMCI cases was five
times higher than the slope of SMCI cases. When the
slopes of SMCI cases were studied more thoroughly, it
was noticed that there were two different subgroups in
the SMCI group: a group with lower slopes and another
group with higher slopes that overlap with the slopes of
the PMCI cases. It is expected that the peak with higher
slopes represents MCIs that would convert to AD or
other dementia later if the follow-up was continued.
Davatzikos et al. [20] and Cui et al. [19] also found in
their studies that subjects in the SMCI group did not
have uniform results. Some SMCI cases had markers
similar to AD, suggesting that they may convert to AD
in the future [19, 20].

Samtani et al. [35] modeled a subject’s rate of dis-
ease progression using a logistic model with several

covariates. Severity of the disease was measured using
ADAS and the analysis was restricted to an AD pop-
ulation [35]. Another approach for modeling disease
progression was presented by Escudero et al. [36].
They found profiles of disease and normality using an
unsupervised learning method (k-means clustering).
Escudero et al. [36] calculated a so-called Bioindex
that describes a subject’s degree of membership to the
profile of disease on the basis of measured data. To
study evolution of Bioindeces over time, a sigmoid
function was fitted to the Bioindex values at differ-
ent time points. They used the same approach as here
and fitted an individual function to the Bioindeces of
each subject and studied evolution of Bioindeces in
the groups of SMCI and PMCI. As in this study, they
found that converters had steeper progression towards
AD than non-converters. However, Escudero et al. [36]
did not take into account that MCI patients arrived in
the study at different phases of the disease, and they
did not synchronize the time stamps as we did.

Patient visits in this study were synchronized
according to the time of receiving AD diagnosis.
Using this method, the accuracy of the synchronization
depends on the accuracy of the actual AD diagnoses.
Also, data points of the SMCI cases are not synchro-
nized because they do not have an AD diagnosis.
Jedynak et al. [37] and Yang et al. [38] proposed more
sophisticated methods for synchronization. Jedynak et
al. [37] used multiple biomarkers to create a disease
progression score, which set the subjects on the same
timeline [37]. Biomarkers were assumed to follow a
sigmoidal function when constructing the disease pro-
gression score [37]. Yang et al. [38] modeled evolution
of ADAS 13 score over time with an exponential model
and then defined the start of the cognitive decline using
the model. Other biomarkers were then synchronized
using the estimated period of cognitive decline. After
the synchronization, evolution of biomarkers over time
and relations between them were clearer and they sup-
ported the model presented by Jack et al. [13, 14, 38]. In
the approach presented in [38], one needs to define an
accurate model for the progression of ADAS 13 score
over time, and the accuracy of the synchronization
depends on the suitability of the model.

The dynamic range for the DSI depends on training
sets used. In this study, the DSI values were calculated
on the basis of data from SMCI cases at baseline and
PMCI cases at the point of conversion to AD. Thus,
the dynamic range lies between MCI and early AD.
Using the same model of disease progression to study
healthy controls and late AD groups would saturate
DSI values close to zero and one, respectively. On the
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other hand, if the training set consisted of PMCI and
AD groups, the DSI would characterize changes at the
later phase of the disease. Thus, if different training
sets are used, the longitudinal behavior of the DSI val-
ues can be somewhat different. As another example, if
training set included healthy and AD cases, slopes of
the SMCI and PMCI groups should be closer to each
other than they are in this study.

Training data for this study was selected from SMCI
cases at the baseline and PMCI cases at the point of con-
version because the initial purpose for the proposed
method is in early diagnosis of AD. The main use
case for the method is a situation where a subject with
memory complaints arrives at a clinic. After some tests
have been administered, computer-based decision sup-
port tools could help in objective assessment of patient
data and possibly provide help for earlier diagnosis of
AD. If the diagnosis cannot be made at the baseline,
longitudinal quantification of progressing disease state
provides additional information to base the diagnosis
on. By selecting SMCI cases at the baseline and PMCI
cases at the moment of receiving diagnosis as the train-
ing set, the system is optimized to detect early AD cases
from an MCI population referred to a memory clinic.
The DSI method is currently incorporated in a deci-
sion support tool that will be used in pilot studies and
the training set used in the tool comprises SMCI and
PMCI cases, similar to this study. When studies with
other purposes (e.g., focus on conversion from normal
cognition to MCI) are done in the future, then the prac-
tical issues of selecting the most appropriate training
population will be addressed.

Recently, several studies have predicted the con-
version from MCI to AD by combining multiple
data modalities and identifying converters and non-
converters on the basis of the data [19–23]. In these
studies, multimodal data were combined using logis-
tic regression [21, 22], the DSI method [22], support
vector machine classifiers [19, 22, 23, 39], and a Naive
Bayes classifier [22]. In [19, 20, 22, 40], it was found
that combination of multimodal data resulted in bet-
ter classification performance than the use of a single
modality of data, e.g., using only neuropsychological
tests. However, those studies did not report whether the
differences were statistically significant. Ewers et al.
[21] found that increasing number of variables in the
model from one to four increased the classification
accuracy, but the increase was not significant accord-
ing to the 95% confidence intervals. Cui et al. [39] also
combined different data modalities for predicting con-
version from normal cognition to MCI. They reported
that combination of neuropsychological test scores and

MRI features resulted in significantly higher classifi-
cation accuracy for the predictions than using either of
the data modalities alone. Results from our study are in
line with the previous research findings. Combination
of all available data resulted in higher classification
accuracies and AUCs than using only a single modal-
ity of data and increases in classification accuracies
were not always statistically significant. To account for
multiple comparisons, we used Bonferroni correction
which is known to be a rather conservative method.
However, in many comparisons, p-values were higher
than 0.05.

It is worth noting that the calculation of the lin-
ear regression included DSI values from the point of
conversion for PMCI cases. Thus, the classification
performance measures presented here do not describe
the ability of the trend parameters to predict conversion
from MCI to AD. However, they demonstrate that the
trend parameters of the DSI values are clearly different
between the groups of SMCI and PMCI. Prediction of
MCI to AD conversion with the DSI method using data
from the ADNI database has already been studied in
[22] and [25].

One interesting finding was that the MRI-derived
longitudinal DSI values had the strongest linear asso-
ciation but the regression parameters of the MRI-based
DSI values performed the worst in the classification.
One explanation could be that changes related to nor-
mal aging in the brain may interfere with the results.
For example, Koikkalainen et al. [41] removed effects
of age and other confounding factors by dividing
patients into subgroups and using linear regression.
These procedures improved classification accuracies
in their study. Another explanation could be that MRI
may be a better indicator of the rate of disease progres-
sion than of the disease stage. Stronger linearity of the
MRI-derived DSI over time might also be caused by
the fact that MRI measures are not as prone to daily
variations as neuropsychological tests may be.

Missing values were imputed with the values from
the previous available visit. This approach resulted in
slightly outdated data for some patient visits and biased
the results towards non-progression. This approach
was chosen so that all data used in the analyses really
were available from a patient at the specific moments.
This would not be the case, e.g., if missing values were
replaced with the next available values or using other
more complex imputation methods. Replacing missing
values with next available values would have biased
results toward progression to some extent and there
would still have been missing values because some
patients did not have any values available beyond the
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last time point. If the missing values had not been
imputed at all, the DSI values at different time points
would have been calculated using different variables
for each visit and this would have hindered the inter-
pretation of the longitudinal results.

The study had some limitations. The final diagnoses
for the subjects were determined on the basis of clinical
evaluation and they were not verified with postmortem
histological samples taken from the brain. Also, the
study period of 48 months is relatively short. Thus,
some subjects diagnosed currently as stable MCI may
convert to AD later. This study utilized longitudinal
data from a period of 2–4 years. In clinics, where the
patients are diagnosed, there may not be data from
such a long period available. Less longitudinal data
will probably produce more variation in the slopes
and the intercepts of the regression equation. On the
other hand, this study suggests that quantifying lon-
gitudinal patient data using the DSI method provides
valid information for decision support and is a valid
methodology to follow-up a patient’s condition in a
quantitative manner.

In conclusion, this study demonstrates that combin-
ing sparse and heterogeneous data with the DSI method
can be used for deriving a quantitative measure related
to early AD progression. Significant trends were found
in longitudinal DSI values: rate of change of DSI val-
ues was five times higher in the PMCI group than in the
SMCI group. Classification of the subjects as convert-
ers and non-converters on the basis of the regression
parameters (the slope and the intercept) also showed
that SMCI and PMCI cases can be differentiated on the
basis of the trend parameters.
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